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ABSTRACT I

- -I
The capabilities of the maximum likelihood estimator (MLE) I

and the maximum entropy method (MEM) in resolving closely spaced j
optical point targets are compared using Monte Carlo simulation

,esults for three different examples. It is found that the MEM

is very sensitive to the noise and that the MLE performs better

than the MEM in all examples.
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I. INTRODUCTION

Resolving closely spAced objects (CSO) is an important task

in optical signal processing. The optical signal is often

subject to blurring by a convolutional function and contamination

by noise so that the workable frequency bandwidth is limited and

hence the resolution of the restored signal is also limited.

Several nonlinear processing techniques have been proposed and

employed with the aim to increase the resolution power [1]. By

incorporating a priori knowledge that the restored optical

signal must be positive, those techniques are generally able to

extrapolate the signal bandwidth. Among them, the maximum likeli-

hood estimator (MLE) and the maximum entropy method (MEM) are two

common approaches.

The well-known MLE has enjoyed a wide application in the area

of estimation. It has been shown that MLE is asymptotically un-

biased and efficient under certain gernral conditions. If the

noise is additive gaussian then this estimator becomes equivalent

to the least-square method. The MEM, which was originally developed

to enhance the spectral resolution or, short data records (2], is

currently still a topic of interest. Besides spectral analysis,

MEM has been adopted in a number of other areas where resolution

is of great concern.

Early reports seemed to imply the MEM is a method with super

1



resolution power. However, recent studies have indicated that

its performance degrades significantly in the presence of noise

(3]. In [4], it was suggested that the MEM is superior to the MLE

in restoring optical impulse functions although no direct compari-

son was given.

The objective of this report is to compare the capabilities

of MLE and MEM in resolving two optical CSO's. Since an

analytical approach to this problem did not appear feasible, the

comparison was based on the average characteristics of the Monte

Carlo simulation results. Three examples which involved diffe-ent

blurring functions were employed in the simulation study. Of

particular interest was the third example which dealt with the

CSO resolution problem in the environment of a scanning detector

and had been studied in [5] by using MLE. It was found that

MLE could actually resolve the closely spaced optical targets

better than MEM.
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II. RESTORATION OF OPTICAL IMPULSES USING MLE AND MEM

The problem of optical impulse restoration is illustrated by

Fig. 1. In many applications, the optical objects are located so

far away from the sensor that they can be practically regarded

as point targets and represented mathematically by the summation

of impulse functions,
m

O(X) = ci 6(x-6i) Qv >0_ (1)

where m is the number of point targets; a. and 6 . are the inten-

sity and position of the ith target. In optics, a. is physically1

constrained to be positive. The observation is assumed to be

related to the input by

y(x) = O(x)W g(x) + n(x) (2)

where g(x) is the blur function and n(x) is an additive white

gaussian noise (WGN). Note that the symbol® denotes convoluticn.

Given the observation, the essential problem is to estiamte {fa.

and {1.6 For the following discussion, we will further assume

that m=2 (two targets) , that fDg 2(x) dx=l (unit-energy blur

function) and that only discrete samples {yi, i=l, 2,...,N} which

are observed at {xi, i=l, 2,...,N} over the spatial range (-X,XI

are available.

The maximum likelihood estimator finds a and 3 , the estimates

The WGN assumption is apprcpriate when the observation noise is
determined either by circuit thermal noise or by "shot" noise
with very large intensity.
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of a. and 8. by maximixing the likelihood function which is given

by

£(_,_) =, N/2onN exp - (Y-G ()_TIY-Gc_) (3)(2 ) TO 0n c

whc:e =(aVOL,2)T, -=(-1,8 2)T, Y(ylfy2,'.,yN)T and

G =: ::)(4)
q(XN-8I g x (N- 2

o is the standard deviation of the WGN. It can be shown that [5]n

A T -1 T,C, (GG= (5)

and 8 satisfies the following equation,

L( 8 ) = max L( 8
1 ,82) (6)

41 , 82

where

L(= yTG(GTG) GTY. (7)

By defining N
=6i) - Elg(xji-ai). yj i --l,2 (8)

1 j=1

1(01,11) 2 g(xj-8 1 ) g(xj-8 22 (9)
j=l

we can rewiite (7) as

L(_) = 1 V 2(a1) + K (a2) -2p K(Slý.1(B2). (10)
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To obtain the optimal solutions for c and B using (5) and

(f) in conjunction with (7) or (10) usually requires a constrained

nonlinear optimization algorithm which is numerically complicated

and c-cmpututioally costly. A suboptimal solution is available if

we restrict L 1 and i2 to be coincident with the sampling positions

[6]. In this case, 6 can be found by searching for the global

raxirnuw ot (10) in a double do-loop fashion over { (xi,x.) where

the indices are such that l<i<j'_N and the corresponding ai. and

-.x must be both positive. During thes arch, the required i<),

iý1,2 and 4&; can be obtained simply by looking up the

pý-ecomputed and stored output sequences of the discrete matched

filce: and thc discrete autocorrelator respectively. If the optimal

solution is desired the output of this suboptimal approach can

be fed into a nonlinear optimization algorithm such as the

Quasi-Newtc-n method as the initial guess.

The •iaximum entropy method for restoring the optical impulse

function is shown in Fig. 2. The ME1M, which is a nonparametric

approach, finds o(x), the restored signal, by maximizing its entropy

H =]Zn o(x)dx (11)

-X

while satisfying the constraint

-X ^ JWkX (1
0 .k' =] o(x) e dx. (12)

-X
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O(k) is obtained from the windowed inverse filter.

The choice of the window width, Q , of the inverse filter repre-

sents a compromise between spatial resolution and signal-to-noise ratio

(SNR). On one hand the window should be made as wide as possible

in order to provide higher spectral resolution. On the other hand,

it should be kept as narrow as possible in order to eliminate the

noise effect. The idea of the MEM is to extrapolate, in

accordance with the principle of maximum entropy, the bandwidth

of the signal at the output of the inverse filter which has

limited the signal bandwidth to the region where SNR is relatively

high.

The solution of (11) and (12) has been shown to be given by

17]

(2X) 7K+l

o(x) - -X<x<X (13)
K 2

1 + y~ expI- jkTr (2X) (x+X)}

with the K+l unknowns J7k) determined as the solution of the

K+1 Yule-Walker linear equations

r t



I
0 (0) O' k) .' O(W) 1 YK+1

A A

o0(0) O'(O,,) .. O(K)i il 0i " (W OV (0) . (W O(K-1) Y1 0

. . (14)

S0(W 0'^ (W 0I) ^

K K-1 0

where wk = kn12X) , k=0,1,...,K and

'O(k) = 2R O(Wk) exp (-j kX) (15)k eý k

Note that the width of the window of the inverse filter is ]
effectively determined by the parameter K and is equal to

-1
I/2K(2X)-. Equation (14) can be solved recursively by using the

T.evinson algorithm [8]. The spatial peaks of o(x) can be i

identified by locating the minima in the denominator of (13).

9



III. COMPARISON VIA SIMULATIONS

-1j

Three examples were used to compare the resolution capabilities 4

of the MLE and the MEM. Here the resolution capability was evalu-

ated only in terms of parameter estimation Ferformance although

the detection performance should also be considered. We assume

that a priori knowledge of the number of targets (detection problem)

was available. Since we were more concerned with the positions

of the targets, we compared the two methods in terms of the

performance (standard deviation and bias) of position estimation. i.1

For the purpose of this comparison, the suboptimal implemen-

tation of the MLE as described in the previous section was employed

in the first two examples and the optimal approach in the third 5

example. The estimation statistics were collected from 100 Monte

Carlo runs. The procedure for the MEM was more complicted because

the output depended on the order of the set of linear equations,

(14), and the number of minima exhibited in the denominator of

(13) was not always exactly equal to 2, the number of targets.

For each order of equations, the first 100 Monte Carlo runs which

displayed two or more minima were used in computing the statistics.

For each of those runs, the loc. tions of two lowest minima were

taken as the position estimates of the two targets. The best esti-

mation performance (minimum estimation variances) among all orders i
of equations examined was considered as the performanceof the MEM.

IIi
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For each of the three examples, the separation L between thex

two optical targets as well as the SNR were varied. The SNR was

defined as

SNR = ( xi )) /a (16a)j=l

=X c/(a x i=1,2 (16b)

where 6x is the spatial sampling step. In all cases, SNR 1 and

SNR 2 were set equal and the two targets were located at

011,62=tx/2. Since the configuration of the targets was

symmetrical and the blur functions used in the examples were even

functions, the standard deviations as well as biases of 1 and 62 2

were expected to be asymptotically equal. Therefore only the

average value was used to characterize the estimation accuracy.

Example 1:

"g 2 2
(x) ( ) exp[- (x/a) ao = 10

N (sample size) =128 (17) :

6 = 1i

The blur function in this example which is similar to the one used

in [4] is usually observed when atmospheric turbulence is

significant. The associated autocorrelation function P(T)

and Fourier transform G(w) are given by

11A
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exp - (18)

2~ 2 2GM (4ro exp(-&jo W) (19)

The performances of the MLE and the MEM are compared as shown

in Fig. 3. The standard deviation u and the bias b of the
x x

position estimation are plotted against the target separation

6 for SNR = 20 and 10. For either of these two methods, it _;an
xxbe observed that the performance degrades when A x becomes smaller

or when SNR is reduced. However when compared with each other,

it is obvious that the MLE is better than the MEM in the sense

of smaller a and b for almost all combinations of A and SNR.
x x x

From Fig. 3, it can also be seen that the two targets behave

like isolated targets for larger A (e.g., > 3c) where a and b

remain almost constant. If the effect of iS (equal to 1) on the

estimation accuracy is taken into consideration, it is acceptable

to say, based on data from Fig. 3, that in this separation range

either MEM or MLE is almost unbiased (b <6 ) and their standard

deviations are close to the square root of the Cramer-Rao bound*

for a single target which is equal to .707 for SNR=20 and 1.414

for SNR= 10.

The Cramer-Rao bound (CRB) is the lower bound on the variance of
an unbiased estimator. For a single target, the CRB of the position estimate

is equal to 1/(SNR.B) 2 where B defined as B2 If 2G2(w)dw/ c G2 ()dw is

!,he so-called root-mean-square bandwidtR. In example 1, B=.0707.

12
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g(x) 0 2-1/4 .
- $ \exp [I 1/2(x/o)]2

10 o 10

.00

.. \ '•

5

!I

0 -

0 1 2 3 4

Fig. 3(a). Performance comparison of MLE and MEM, example 1.
Estimatimation bias, bx, is plotted as a function of target
separation, 6x; A is normalized with a of g(x).x
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ITR-57(3b7)

Z Of

SNR
20

"- 10 1 M LE

1.5 \ 20

0~ 1 MEM

0.5

0 I, , I , -- , I

0 1 2 3 4

Fig. 3(b). Performance comparison of MLE and MEM, example 1.
Estimation standard deviation, a., is plotted as a function of
target separation A . Both a and A are normalized with c of
g(x).
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*1
Example 2:

g(x) (3/2) sin 2(x)/(Trx) 2 x=e/(X/D) (20)

N=128

6--.I

Here g(x) is the blur function due to a slit aperture with

length equal to D. The classical Rayleigh resolving power in

angle (e) for this type of aperture is equal to X/D where X is

the wavelength of the incident light. Tue associated P(r) and

G(w) are given in the following:

P(T)= 2vr--sin (2'T)3 (21)

2 7Tt

G(w) (22)

otherwise

Note that this blur function is bandlimited.

Figure 4 shows the comparison o± the MLE and the MEM using

this example with SNR=20. Obviously, the MLE is much better than

the MEM in estimating the positions of the optical CSO's. Note

that the hump of the MLE aox curve is due to the first sidelobe

of g(x).

15
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iTR-557(4a)".3
lI

k g~xW (3/12)llsin OVOxl~)2
'--' I

.2

o\

A' I

.1 --- \.

\ - I

0 I I I I I, I
0 0.5 1.0 1.5 2.0

Fig. 4(a). Performance comparison of MLE and MEM, example 2.
Estimation bias, b x, is plotted as a function of target sepa-
ration, 6 x
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.2 -- O MEM

-0-e

MIE

.1 0SNR 20

n0

.05

.02I I I I I

0 0.5 1.0 1.5 2.0

Fig. 4(b). Performance comparison of "-,E and MEM, example 2.
Estimation standard deviation, ax, is .otted as a function
of target separation A x x
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Example 3:

This example deals with the CSO resolution in the

environment of a scanning detector. The problem has been treated

in [5] using the MLE. A brief description is as follows. A

detector scans through the focal plane of an optical sensor on

which an image due to a pair of CSO's in the field-of-view of the

sensor has been produced. The spatial structure of the image is

thus converted into a temporal signal. Without loss of generality,

a unity scanning rate can be assumed so that the spatial and

coordinates are equivalent. It is also assumed that the two CSO's

are lying in the scan direction (e.g., x-axis). The blur function

g(x) appearing in the signal model, Eq. (?), is now given by the

convolution of the point spread function p(x,y) and the detector

response function d(x,y). Here in this example, p(x,,' is due to

an annular aperture with diameter equal to 2 A,/D (X/D is the optical

diffraction limit) and obscuration coefficient equal to 50%, and

d(x,y) is assumed to be uniform over the detector surface whose

dimensions are 2 /f) in scan direction and 6 I/D in cross-scan

direction.

In this example, no closed form expressions can be obtained

for g(x) and G(w) and therefore they are computed numerically.

Sixty-four samples taken at .2 ,/D interval are used.

In Fig. 5, the root-mean-square (RMS) errors, ex, of the

position estimation using MLE and MEM are plotted as functions of

18
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S~Fig. 5. Performance comparison of MLE and MELA, example 3;
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the target separation. Both variahles are expressed in terms

of the detector width in the scan direction. Note that

2 2½e = (b + o ) . Again, it is obvious that the MLE can resolve the

CSO's much better than the MEM in this example. A
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IV. CONCLUSION

Based on simulation results with three diverse examples,

it can be concluded that the maximum entropy method, as compared

to the maximum likelihood estimator, is not an outstanding approach

for increasing the resolution of two closely spaced optical point

targets particularly in the presence of noise. The difficulty
I

with the M1EM lies in the fact that it is derived without considering

the measurement noise and it can only depend on the windowed inverse

filter to reduce the noise effect. Although some modifications

including the noise compensation scheme [9] and another maximum

entropy formulation [10] have been proposed to deal with the noise,

the results are still not very convincing. Besides, the simplicity

of the MEM has been lost in these new approaches.
21
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